In this paper we examine the relationship between the flow of the replicator dynamic, the continuum limit of Multiplicative Weights Update, and a game's response graph. We settle an open problem establishing that under the replicator, sink chain components -- a topological notion of long-run outcome of a dynamical system -- always exist and are approximated by the sink connected components of the game's response graph. More specifically, each sink chain component contains a sink connected component of the response graph, as well as all mixed strategy profiles whose support consists of pure profiles in the same connected component, a set we call the content of the connected component. As a corollary, all profiles are chain recurrent in games with strongly connected response graphs. In any two-player game sharing a response graph with a zero-sum game, the sink chain component is unique. In two-player zero-sum and potential games the sink chain components and sink connected components are in a one-to-one correspondence, and we conjecture that this holds in all games.


翻译:在本文中,我们审视了复制器动态的流程、倍增 Weights更新的连续限制和游戏响应图之间的关系。我们解决了一个开放的问题,确定在复制器下,汇链组件 -- -- 一个动态系统长期结果的地形学概念 -- -- 总是存在,并且被游戏响应图中与汇相连的部件所近似。更具体地说,每个汇链组件包含响应图中与汇有关的部分,以及所有混合战略剖面图,其支持由同一连接组件中的纯度剖面组成,一组我们称之为连接组件的内容。作为必然结果,所有图谱都是在与强烈关联的响应图的游戏中反复出现的。在任何与零和游戏共享响应图的双玩游戏中,汇链组件是独一无二的。在双玩零和潜在游戏中,汇链组件和汇连接组件是一对一的对一对应,我们推测这在所有游戏中都存在。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
139+阅读 · 2023年3月24日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员