Differential Privacy (DP) is the leading approach to privacy preserving deep learning. As such, there are multiple efforts to provide drop-in integration of DP into popular frameworks. These efforts, which add noise to each gradient computation to make it DP, rely on composition theorems to bound the total privacy loss incurred over this sequence of DP computations. However, existing composition theorems present a tension between efficiency and flexibility. Most theorems require all computations in the sequence to have a predefined DP parameter, called the privacy budget. This prevents the design of training algorithms that adapt the privacy budget on the fly, or that terminate early to reduce the total privacy loss. Alternatively, the few existing composition results for adaptive privacy budgets provide complex bounds on the privacy loss, with constants too large to be practical. In this paper, we study DP composition under adaptive privacy budgets through the lens of R\'enyi Differential Privacy, proving a simpler composition theorem with smaller constants, making it practical enough to use in algorithm design. We demonstrate two applications of this theorem for DP deep learning: adapting the noise or batch size online to improve a model's accuracy within a fixed total privacy loss, and stopping early when fine-tuning a model to reduce total privacy loss.
翻译:差异隐私(DP)是保护隐私保护深层学习的主导方法。 因此, 有很多努力可以让 DP 融入流行框架。 这些努力在每次渐变计算中增加噪音, 使它成为 DP, 依靠组成理论来约束在DP 计算序列中发生的全部隐私损失。 然而, 现有的组成理论在效率和灵活性之间呈现了一种紧张。 大多数的理论都要求序列中的所有计算都有一个预先定义的DP参数, 称为隐私预算。 这妨碍了设计培训算法, 以调整直接的隐私预算, 或提前终止的, 以减少全部隐私损失。 或者, 适应性隐私预算的现有组成结果很少为隐私损失提供了复杂的界限, 并且经常太大, 无法实际操作。 在本文中, 我们通过 R\ enyi 差异隐私的镜像, 在适应性隐私预算下研究DP 构成, 证明一个更简单的参数, 更简单, 可以用于算法设计。 我们为 DP 深层次学习演示了该理论的两种应用: 调整噪音或分量大小的网络, 来改进整个隐私损失的模型, 以阻止完全的隐私损失。