Runtime enforcement refers to the theories, techniques, and tools for enforcing correct behavior with respect to a formal specification of systems at runtime. In this paper, we are interested in techniques for constructing runtime enforcers for the concrete application domain of enforcing safety in AI. We discuss how safety is traditionally handled in the field of AI and how more formal guarantees on the safety of a self-learning agent can be given by integrating a runtime enforcer. We survey a selection of work on such enforcers, where we distinguish between approaches for discrete and continuous action spaces. The purpose of this paper is to foster a better understanding of advantages and limitations of different enforcement techniques, focusing on the specific challenges that arise due to their application in AI. Finally, we present some open challenges and avenues for future work.
翻译:运行时强制执行是指在运行时系统的正式规格方面执行正确行为的理论、技术和工具。在本文件中,我们感兴趣的是建设运行时强制执行者的技术,以具体应用AI中实施安全的领域。我们讨论了传统上如何在AI领域处理安全问题,以及如何通过整合运行时强制执行者对自学代理人的安全提供更正式的保障。我们调查了有关此类实施者的一些工作,我们在那里区分了离散和连续行动空间的方法。本文件的目的是促进更好地理解不同执行技术的优缺点和局限性,侧重于由于在AI中应用这些技术而产生的具体挑战。最后,我们为今后的工作提出了一些公开的挑战和途径。