Multiple lines of evidence suggest that predictive models may benefit from algorithmic triage. Under algorithmic triage, a predictive model does not predict all instances but instead defers some of them to human experts. However, the interplay between the prediction accuracy of the model and the human experts under algorithmic triage is not well understood. In this work, we start by formally characterizing under which circumstances a predictive model may benefit from algorithmic triage. In doing so, we also demonstrate that models trained for full automation may be suboptimal under triage. Then, given any model and desired level of triage, we show that the optimal triage policy is a deterministic threshold rule in which triage decisions are derived deterministically by thresholding the difference between the model and human errors on a per-instance level. Building upon these results, we introduce a practical gradient-based algorithm that is guaranteed to find a sequence of triage policies and predictive models of increasing performance. Experiments on a wide variety of supervised learning tasks using synthetic and real data from two important applications -- content moderation and scientific discovery -- illustrate our theoretical results and show that the models and triage policies provided by our gradient-based algorithm outperform those provided by several competitive baselines.
翻译:多重的证据表明,预测模型可能受益于算法分级。 在算法分级中,预测模型不会预测所有情况,而是将其中一些情况推迟给人类专家。 但是,模型预测准确性与算法分级中人类专家之间的相互作用并没有得到很好理解。 在这项工作中,我们首先正式确定一个预测模型可能从算法分级中受益的情况。 在这样做时,我们还表明,经过充分自动化培训的模型在三分制中可能不是最优的。然后,根据任何模型和理想的分级水平,我们表明,最佳三分制政策是一种确定性的门槛规则,在这种规则中,通过将模型和人为差错的界限置于每个分级水平上,从决定性地得出三分制决定。我们根据这些结果,引入了一种基于梯度的实用算法,保证找出三分制政策的顺序和预测性能提高的模型。实验用两个重要的应用软件 -- 内容调适和科学发现 -- 来说明我们的理论结果,并展示了我们通过梯度提供的几种模型和竞争性的基数级模型。