Paraphrasing is a useful natural language processing task that can contribute to more diverse generated or translated texts. Natural language inference (NLI) and paraphrasing share some similarities and can benefit from a joint approach. We propose a novel methodology for the extraction of paraphrasing datasets from NLI datasets and cleaning existing paraphrasing datasets. Our approach is based on bidirectional entailment; namely, if two sentences can be mutually entailed, they are paraphrases. We evaluate our approach using several large pretrained transformer language models in the monolingual and cross-lingual setting. The results show high quality of extracted paraphrasing datasets and surprisingly high noise levels in two existing paraphrasing datasets.
翻译:自然语言推论(NLI)和参数推论(parphraising)之间有一些相似之处,并可从联合方法中受益。我们提出了从国家语言推论数据集提取参数数据集和清理现有参数数据集的新方法。我们的方法基于双向导导导;即如果两句话可以相互产生,它们就是一种引言。我们在单一语言和跨语言环境中使用若干大型预先训练的变压器语言模型评估我们的方法。结果显示,提取的参数数据集质量高,现有两个参数数据集的噪音水平高得惊人。