The approximate Carath\'eodory theorem states that given a compact convex set $\mathcal{C}\subset\mathbb{R}^n$ and $p\in\left[2,+\infty\right[$, each point $x^*\in\mathcal{C}$ can be approximated to $\epsilon$-accuracy in the $\ell_p$-norm as the convex combination of $\mathcal{O}(pD_p^2/\epsilon^2)$ vertices of $\mathcal{C}$, where $D_p$ is the diameter of $\mathcal{C}$ in the $\ell_p$-norm. A solution satisfying these properties can be built using probabilistic arguments or by applying mirror descent to the dual problem. We revisit the approximate Carath\'eodory problem by solving the primal problem via the Frank-Wolfe algorithm, providing a simplified analysis and leading to an efficient practical method. Furthermore, improved cardinality bounds are derived naturally using existing convergence rates of the Frank-Wolfe algorithm in different scenarios, when $x^*$ is in the interior of $\mathcal{C}$, when $x^*$ is the convex combination of a subset of vertices with small diameter, or when $\mathcal{C}$ is uniformly convex. We also propose cardinality bounds when $p\in\left[1,2\right[\cup\{+\infty\}$ via a nonsmooth variant of the algorithm. Lastly, we address the problem of finding sparse approximate projections onto $\mathcal{C}$ in the $\ell_p$-norm, $p\in\left[1,+\infty\right]$.
翻译:大约的 Carath\\\ odory 理论表示,根据一个压缩的 convex 设置$\ mathcal{C\\ subset\ mathb{R\ n$和$p\ left[2,\\ infty\right[美元,每个点$x_in\ mathcal{C}美元,每个点美元美元在$\ell_p$-norm 中可以大约相当于$\ epsilon$( mathcal{O}(pD_ pright\ p%2\\\ epsilon2) 的组合, 美元[rderrent\ mexal=macal_calball}$, $C_prentral_cal_x 美元(美元) 的垂直值, 美元(美元) 美元(美元)的美元(美元), 美元(美元) 美元(美元) 美元(crexx 的直径(美元)的直径直径(美元) 的直径解的直径解數(美元) 的直径(美元)的直径)的直径解數数(美元)的直径), 的解(美元)的解(美元)的解(美元)的直径)的解算法是(美元) 。当目前數数(美元)的直數(美元)的直譯的直法的直法的直譯(美元)的直譯(美元)的直譯)的直法的直系的直系的直系的直系的直譯)時, 的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系是的直系的直系的直系的直系的直系的直系的直系)時, 的直系的直系的直系的直系的直系的直系的直系的直系的直系的正的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系