Modern drug discovery is often time-consuming, complex and cost-ineffective due to the large volume of molecular data and complicated molecular properties. Recently, machine learning algorithms have shown promising results in virtual screening of automated drug discovery by predicting molecular properties. While emerging learning methods such as graph neural networks and recurrent neural networks exhibit high accuracy, they are also notoriously computation-intensive and memory-intensive with operations such as feature embeddings or deep convolutions. In this paper, we propose a viable alternative to existing learning methods by presenting MoleHD, a method based on brain-inspired hyperdimensional computing (HDC) for molecular property prediction. We develop HDC encoders to project SMILES representation of a molecule into high-dimensional vectors that are used for HDC training and inference. We perform an extensive evaluation using 29 classification tasks from 3 widely-used molecule datasets (Clintox, BBBP, SIDER) under three splits methods (random, scaffold, and stratified). By an comprehensive comparison with 8 existing learning models including SOTA graph/recurrent neural networks, we show that MoleHD is able to achieve highest ROC-AUC score on random and scaffold splits on average across 3 datasets and achieve second-highest on stratified split. Importantly, MoleHD achieves such performance with significantly reduced computing cost and training efforts. To the best of our knowledge, this is the first HDC-based method for drug discovery. The promising results presented in this paper can potentially lead to a novel path in drug discovery research.


翻译:由于分子数据量大,分子特性复杂,现代药物发现往往耗时、复杂且成本低效,因为分子数据量大。最近,机器学习算法在通过预测分子特性对自动药物发现进行虚拟筛选方面显示出令人乐观的结果。虽然图形神经网络和经常神经网络等新兴学习方法显示高度精准,但它们也臭名昭著的计算密集和记忆密集,其操作包括特征嵌入或深层变异等功能。在本文中,我们提出一种可行的替代现有学习方法,即MoleHD,这是以大脑激发的超度计算(HDC)为基础的方法,用于分子财产预测。我们开发了HDC的发现编码,以预测分子特性特性特性特性特性特性特性特性的虚拟筛选为虚拟效果。虽然像图形神经网络和经常神经网络等新兴学习方法显示的分子在高维度矢量矢量载器中的表现,我们利用3个广泛使用的分子数据集(Clintox,BBBBP,SIDER)进行广泛的分类工作,根据三种分解方法(rand,Safold,Safold,calold, 和Sadal-deal-dealde rude),我们目前使用的药物计算方法可以与8个现有学习模型的模型进行全面比较。我们这个在ROC-caldeal-cal-caldealdeal 3级的计算,我们在RODDIDIDDDDMD 中取得高分解算法中取得最高分解算法。

0
下载
关闭预览

相关内容

【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
专知会员服务
44+阅读 · 2020年10月31日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
VIP会员
相关VIP内容
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
专知会员服务
44+阅读 · 2020年10月31日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员