Based on a recent novel formulation of parametric anisotropic curve shortening flow, we analyse a fully discrete numerical method of this geometric evolution equation. The method uses piecewise linear finite elements in space and a backward Euler approximation in time. We establish existence and uniqueness of a discrete solution, as well as an unconditional stability property. Some numerical computations confirm the theoretical results and demonstrate the practicality of our method.
翻译:我们根据最近一项新型的参数对数反动曲线缩短流量的配方,分析了这一几何进化方程的完全离散数字方法。该方法在空间中使用片断线性有限元素,在时间上使用后向欧勒近似值。我们确定了离散解决方案的存在和独特性,以及无条件的稳定属性。一些数字计算证实了理论结果并证明了我们方法的实用性。