This paper proposes a novel two-stage framework for emotion recognition using EEG data that outperforms state-of-the-art models while keeping the model size small and computationally efficient. The framework consists of two stages; the first stage involves constructing efficient models named EEGNet, which is inspired by the state-of-the-art efficient architecture and employs inverted-residual blocks that contain depthwise separable convolutional layers. The EEGNet models on both valence and arousal labels achieve the average classification accuracy of 90%, 96.6%, and 99.5% with only 6.4k, 14k, and 25k parameters, respectively. In terms of accuracy and storage cost, these models outperform the previous state-of-the-art result by up to 9%. In the second stage, we binarize these models to further compress them and deploy them easily on edge devices. Binary Neural Networks (BNNs) typically degrade model accuracy. We improve the EEGNet binarized models in this paper by introducing three novel methods and achieving a 20\% improvement over the baseline binary models. The proposed binarized EEGNet models achieve accuracies of 81%, 95%, and 99% with storage costs of 0.11Mbits, 0.28Mbits, and 0.46Mbits, respectively. Those models help deploy a precise human emotion recognition system on the edge environment.
翻译:本文提出一个新的情感识别两阶段框架。 使用 EEG 数据, 其表现优于最先进的模型, 同时保持模型规模小和计算效率。 框架由两个阶段组成; 第一阶段是建立名为 EEEGNet 的有效模型, 由最先进的高效架构启发, 并使用含有深度、 相分离的相交层的反向反反反反线区块。 关于 数值和振奋标签的 EEEGNet 模型通常会降低模型准确性。 我们通过采用三种新颖方法改进EEGNet 的二进制模型, 并在基线二进制、 14k 和 25k 参数中分别改进了90%、96.6% 和99.5 % 。 在准确性和存储成本方面,这些模型比先前的状态结果高出9%。 在第二阶段, 我们将这些模型进行二进化, 进一步压缩它们, 并在边缘装置上部署。 Binal Neural 网络( BNNNNS 模型) 通常会降低模型的准确性。 我们改进了EEGNet 的二进化模型, 在本文中改进了三种新方法, 在基线二进化模型上改进了20°% binbisnibital 10 模型上, 和精确度模型上分别实现了 EEG 91M 10 。