We propose a new numerical algorithm for computing the tensor rank decomposition or canonical polyadic decomposition of higher-order tensors subject to a rank and genericity constraint. Reformulating this computational problem as a system of polynomial equations allows us to leverage recent numerical linear algebra tools from computational algebraic geometry. We characterize the complexity of our algorithm in terms of an algebraic property of this polynomial system -- the multigraded regularity. We prove effective bounds for many tensor formats and ranks, which are of independent interest for overconstrained polynomial system solving. Moreover, we conjecture a general formula for the multigraded regularity, yielding a (parameterized) polynomial time complexity for the tensor rank decomposition problem in the considered setting. Our numerical experiments show that our algorithm can outperform state-of-the-art numerical algorithms by an order of magnitude in terms of accuracy, computation time, and memory consumption.
翻译:我们提出一个新的数字算法,用于计算受等级和通用制约的高阶高压高压分解或高压聚分解。将这一计算问题重新作为多元方程系统,使我们能够从计算代数几何学中利用最近的数字线性代数工具。我们用这个多边代数系统的代数属性来描述我们的算法的复杂性 -- -- 多级常规性。我们证明,许多高压格式和级的界限是有效的,这对过度控制的多边系统解决具有独立意义。此外,我们推测一个多级常规性的一般公式,在考虑的设置中产生一个(半计量的)数级分解问题。我们的数字实验显示,我们的算法能够以精确度、计算时间和记忆消耗等量的顺序超越最先进的数字算法。