We investigate the effect of an $\varepsilon$-room of perturbation tolerance on symmetric tensor decomposition. To be more precise, suppose a real symmetric $d$-tensor $f$, a norm $||.||$ on the space of symmetric $d$-tensors, and $\varepsilon >0$ are given. What is the smallest symmetric tensor rank in the $\varepsilon$-neighborhood of $f$? In other words, what is the symmetric tensor rank of $f$ after a clever $\varepsilon$-perturbation? We prove two theorems and develop three corresponding algorithms that give constructive upper bounds for this question. With expository goals in mind; we present probabilistic and convex geometric ideas behind our results, reproduce some known results, and point out open problems.
翻译:更精确地说,假设真正的对称美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-对称容忍室对正对数-美元-美元-美元-美元-美元-美元-对调容忍室对正对数-美元-美元-美元-美元-美元-美元-美元-折分解的影响。更精确地说,假设真正的对称美元-美元-美元-美元-美元-美元-美元-美元-是正对数-美元-美元-美元-美元-对称对称容忍室-美元-美元-美元-美元-美元-美元-月-美元-美元-美元-美元-美元-美元-对称对称对称容忍室-美元-美元-美元-美元-美元-美元-美元-美元-美元/美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-和美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-和美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-和瓦-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-