Errors might not have the same consequences depending on the task at hand. Nevertheless, there is limited research investigating the impact of imbalance in the contribution of different features in an error vector. Therefore, we propose the Feature Impact Balance (FIB) score. It measures whether there is a balanced impact of features in the discrepancies between two vectors. We designed the FIB score to lie in [0, 1]. Scores close to 0 indicate that a small number of features contribute to most of the error, and scores close to 1 indicate that most features contribute to the error equally. We experimentally study the FIB on different datasets, using AutoEncoders and Variational AutoEncoders. We show how the feature impact balance varies during training and showcase its usability to support model selection for single output and multi-output tasks.
翻译:错误可能不会产生取决于当前任务的不同结果。 然而,调查不同特性对错误矢量不同贡献的不平衡影响的研究有限。 因此, 我们建议使用功能影响平衡( FIB) 评分。 它衡量两个矢量之间差异特征的平衡影响。 我们设计FIB评分时是 [ 0, 1] 。 分数接近于 0 表示少数特性促成了大多数错误, 分数接近 1 表示大多数特性都是一样的错误。 我们用 AutoEncords 和 Varicational AutoEccoders 实验了 FIB 不同的数据集。 我们展示了特性影响平衡在培训期间如何不同, 并展示了它支持单输出和多输出任务模式选择的可用性 。