Preferential attachment is commonly invoked to explain the emergence of those heavy-tailed degree distributions characteristic of growing network representations of diverse real-world phenomena. Experimentally confirming this hypothesis in real-world growing networks is an important frontier in network science research. Conventional preferential attachment estimation methods require that a growing network be observed across at least two snapshots in time. Numerous publicly available growing network datasets are, however, only available as single snapshots, leaving the applied network scientist with no means of measuring preferential attachment in these cases. We propose a nonparametric method, called PAFit-oneshot, for estimating preferential attachment in a growing network from one snapshot. PAFit-oneshot corrects for a previously unnoticed bias that arises when estimating preferential attachment values only for degrees observed in the single snapshot. Our work provides a means of measuring preferential attachment in a large number of publicly available one-snapshot networks. As a demonstration, we estimated preferential attachment in three such networks, and found sublinear preferential attachment in all cases. PAFit-oneshot is implemented in the R package PAFit.


翻译:通常会援引优惠附加物来解释各种现实世界现象日益扩大的网络表现形式中这些高度分布特征的出现。在现实世界增长的网络中,试验性地证实这一假设是网络科学研究的一个重要前沿。常规优惠附加物估计方法要求至少对至少两个快照进行观测。然而,许多公开提供的网络数据集只能作为单一快照提供,使应用网络科学家无法衡量在这些案例中的特惠附加物。我们提议一种非参数方法,称为PAFit-oneshot,用于从一个快照中估计在增长网络中的特惠附加物。PAFit-oneshot纠正了在一次快照中只估计特惠附加物值时出现的不为人注意的偏差。我们的工作提供了一种测量在大量公开提供的一粒子网络中特惠附加物的手段。作为示范,我们估计在三个这类网络中存在特惠附加物,并在所有案例中发现亚线性优惠附加物。PAFit-1shot在R包PAFit中实施。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2021年6月30日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
58+阅读 · 2019年11月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CTR预估专栏 | 一文搞懂阿里Deep Interest Network
AI前线
14+阅读 · 2018年7月20日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
14+阅读 · 2020年12月17日
Adversarial Metric Attack for Person Re-identification
Scale-Aware Trident Networks for Object Detection
Arxiv
4+阅读 · 2019年1月7日
VIP会员
Top
微信扫码咨询专知VIP会员