In this paper we model a class of stream and block ciphers as systems of (ordinary) explicit difference equations over a finite field. We call this class "difference ciphers" and we show that ciphers of application interest, as for example systems of LFSRs with a combiner, Trivium and Keeloq, belong to the class. By using Difference Algebra, that is, the formal theory of difference equations, we can properly define and study important properties of these ciphers, such as their invertibility and periodicity. We describe then general cryptanalytic methods for difference ciphers that follow from these properties and are useful to assess the security. We illustrate such algebraic attacks in practice by means of the ciphers Bivium and Keeloq.


翻译:在本文中, 我们将一组流和块密码作为( 普通的) 明确差异方程式的系统, 用于一个有限的字段。 我们称该类“ 差异方程式 ”, 我们称之为“ 差异方程式 ”, 并且我们显示, 应用兴趣的密码, 例如, 与组合器( Trivium 和 Keeloq ) 的LFSR 系统, 属于该类 。 通过使用差异代数, 也就是差异方程式的正式理论, 我们可以正确定义和研究这些密码的重要特性, 比如它们的可视性和周期性。 我们描述这些属性的差异方程式的通用加密方法, 并用来评估安全性 。 我们通过 cphles Bivium 和 Keeloq 来演示这些实际中的代数攻击 。

0
下载
关闭预览

相关内容

【ETH】机器学习数学基础课程笔记, 83页pdf
专知会员服务
67+阅读 · 2021年10月20日
专知会员服务
77+阅读 · 2021年3月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月13日
Arxiv
0+阅读 · 2021年9月30日
Arxiv
12+阅读 · 2020年12月10日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
VIP会员
相关VIP内容
【ETH】机器学习数学基础课程笔记, 83页pdf
专知会员服务
67+阅读 · 2021年10月20日
专知会员服务
77+阅读 · 2021年3月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员