In this paper we model a class of stream and block ciphers as systems of (ordinary) explicit difference equations over a finite field. We call this class "difference ciphers" and we show that ciphers of application interest, as for example systems of LFSRs with a combiner, Trivium and Keeloq, belong to the class. By using Difference Algebra, that is, the formal theory of difference equations, we can properly define and study important properties of these ciphers, such as their invertibility and periodicity. We describe then general cryptanalytic methods for difference ciphers that follow from these properties and are useful to assess the security. We illustrate such algebraic attacks in practice by means of the ciphers Bivium and Keeloq.
翻译:在本文中, 我们将一组流和块密码作为( 普通的) 明确差异方程式的系统, 用于一个有限的字段。 我们称该类“ 差异方程式 ”, 我们称之为“ 差异方程式 ”, 并且我们显示, 应用兴趣的密码, 例如, 与组合器( Trivium 和 Keeloq ) 的LFSR 系统, 属于该类 。 通过使用差异代数, 也就是差异方程式的正式理论, 我们可以正确定义和研究这些密码的重要特性, 比如它们的可视性和周期性。 我们描述这些属性的差异方程式的通用加密方法, 并用来评估安全性 。 我们通过 cphles Bivium 和 Keeloq 来演示这些实际中的代数攻击 。