Large language models (LLMs) such as ChatGPT are increasingly being used for various use cases, including text content generation at scale. Although detection methods for such AI-generated text exist already, we investigate ChatGPT's performance as a detector on such AI-generated text, inspired by works that use ChatGPT as a data labeler or annotator. We evaluate the zero-shot performance of ChatGPT in the task of human-written vs. AI-generated text detection, and perform experiments on publicly available datasets. We empirically investigate if ChatGPT is symmetrically effective in detecting AI-generated or human-written text. Our findings provide insight on how ChatGPT and similar LLMs may be leveraged in automated detection pipelines by simply focusing on solving a specific aspect of the problem and deriving the rest from that solution. All code and data is available at \url{https://github.com/AmritaBh/ChatGPT-as-Detector}.
翻译:暂无翻译