A genetic algorithm is suitable for exploring large search spaces as it finds an approximate solution. Because of this advantage, genetic algorithm is effective in exploring vast and unknown space such as molecular search space. Though the algorithm is suitable for searching vast chemical space, it is difficult to optimize pharmacological properties while maintaining molecular substructure. To solve this issue, we introduce a genetic algorithm featuring a constrained molecular inverse design. The proposed algorithm successfully produces valid molecules for crossover and mutation. Furthermore, it optimizes specific properties while adhering to structural constraints using a two-phase optimization. Experiments prove that our algorithm effectively finds molecules that satisfy specific properties while maintaining structural constraints.
翻译:遗传算法适合探索大型搜索空间, 因为它找到一个近似的解决办法。 由于这一优势, 遗传算法在探索分子搜索空间等广阔而未知的空间方面是有效的。 虽然该算法适合搜索广阔的化学空间, 但很难在保持分子亚结构的同时优化药理特性。 为了解决这个问题, 我们引入了以有限的分子反向设计为特征的遗传算法。 提议的算法成功地产生了有效的分子来进行交叉和突变。 此外, 它利用两阶段的优化来优化特定的特性, 同时坚持结构限制。 实验证明我们的算法在保持结构限制的同时, 有效地找到了满足特定特性的分子 。