Redundancy-aware extractive summarization systems score the redundancy of the sentences to be included in a summary either jointly with their salience information or separately as an additional sentence scoring step. Previous work shows the efficacy of jointly scoring and selecting sentences with neural sequence generation models. It is, however, not well-understood if the gain is due to better encoding techniques or better redundancy reduction approaches. Similarly, the contribution of salience versus diversity components on the created summary is not studied well. Building on the state-of-the-art encoding methods for summarization, we present two adaptive learning models: AREDSUM-SEQ that jointly considers salience and novelty during sentence selection; and a two-step AREDSUM-CTX that scores salience first, then learns to balance salience and redundancy, enabling the measurement of the impact of each aspect. Empirical results on CNN/DailyMail and NYT50 datasets show that by modeling diversity explicitly in a separate step, AREDSUM-CTX achieves significantly better performance than AREDSUM-SEQ as well as state-of-the-art extractive summarization baselines.


翻译:同样,在所创建的概要中,突出与多样性部分的贡献没有得到很好的研究。根据最先进的总结编码方法,我们提出了两种适应性学习模式:AREDSUM-SEQ,在选择刑期时共同考虑突出和新颖之处;AREDSUM-CTX,在选择刑期时先分分分两步,然后分分清显著和冗余,从而能够衡量每个方面的影响。CNN/DailyMail和NYT50的实证结果显示,通过在一个单独的步骤中明确模拟多样性,AREDSUM-CTX取得了大大优于AREDSEM-SEQ的绩效,以及州一级提炼总基准。

0
下载
关闭预览

相关内容

【论文推荐】文本摘要简述
专知会员服务
69+阅读 · 2020年7月20日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
【摘要】抽取式摘要:TextRank和BertSum。
深度学习自然语言处理
9+阅读 · 2020年4月8日
【文本摘要】Text Summarization文本摘要与注意力机制
深度学习自然语言处理
9+阅读 · 2020年3月15日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
1+阅读 · 2021年5月28日
Arxiv
5+阅读 · 2019年10月31日
Arxiv
21+阅读 · 2019年3月25日
Arxiv
3+阅读 · 2018年12月18日
Bidirectional Attention for SQL Generation
Arxiv
4+阅读 · 2018年6月21日
Arxiv
5+阅读 · 2018年5月1日
VIP会员
相关VIP内容
【论文推荐】文本摘要简述
专知会员服务
69+阅读 · 2020年7月20日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
【摘要】抽取式摘要:TextRank和BertSum。
深度学习自然语言处理
9+阅读 · 2020年4月8日
【文本摘要】Text Summarization文本摘要与注意力机制
深度学习自然语言处理
9+阅读 · 2020年3月15日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Top
微信扫码咨询专知VIP会员