This work studies the threats of adversarial attack on multivariate probabilistic forecasting models and viable defense mechanisms. Our studies discover a new attack pattern that negatively impact the forecasting of a target time series via making strategic, sparse (imperceptible) modifications to the past observations of a small number of other time series. To mitigate the impact of such attack, we have developed two defense strategies. First, we extend a previously developed randomized smoothing technique in classification to multivariate forecasting scenarios. Second, we develop an adversarial training algorithm that learns to create adversarial examples and at the same time optimizes the forecasting model to improve its robustness against such adversarial simulation. Extensive experiments on real-world datasets confirm that our attack schemes are powerful and our defense algorithms are more effective compared with baseline defense mechanisms.


翻译:本研究探讨对多元概率预测模型的对抗攻击威胁和可行的防御机制。我们的研究发现了一种新的攻击模式,通过对其他时间序列的过去观察值进行战略性、稀疏(难以察觉)的修改,从而负面影响了目标时间序列的预测。为了减轻这种攻击的影响,我们提出了两种防御策略。首先,我们将之前分类中开发的随机平滑方法扩展到多元预测场景中。其次,我们开发了一种对抗训练算法,该算法学习创建对抗性示例,同时优化预测模型以提高其对此类对抗攻击的鲁棒性。对真实世界数据集的大量实验证明了我们的攻击方案的强大性,以及与基线防御机制相比,我们的防御算法更加有效。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
80+阅读 · 2022年7月16日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员