We study network games in which players choose both an action level (e.g., effort) that creates spillovers for others and the partners with whom they associate. We introduce a framework and two solution concepts that extend standard solutions for each choice made separately: Nash equilibrium in actions and pairwise stability in links. Our main results show that, under suitable monotonicity conditions on incentives, stable networks take simple forms. The first condition concerns whether links create positive or negative payoff spillovers. The second condition concerns whether actions and links are strategic complements or substitutes. Together, these conditions allow a taxonomy of how network structure depends on economic primitives. We apply our model to understand the consequences of competition for status, to microfound matching models that assume clique formation, and to interpret empirical findings that highlight unintended consequences of group design.


翻译:我们研究网络游戏,让玩家同时选择一个行动级别(如努力),为其他人及其伙伴创造外溢效应。我们引入一个框架和两个解决方案概念,为每个选择分别提供标准解决方案:纳什在行动中的平衡和双向稳定联系。我们的主要结果显示,在适当的奖励单一性条件下,稳定的网络以简单的形式出现。第一个条件是,联系是否产生正或负的溢出效应。第二个条件是,行动和联系是战略补充还是替代。这些条件加在一起,允许对网络结构如何依赖经济原始生物进行分类。我们运用我们的模型来理解竞争地位的后果,对假定俱乐部形成的微型匹配模式,并解释突出群体设计意外后果的经验性发现。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年11月15日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Arxiv
4+阅读 · 2020年10月18日
Arxiv
9+阅读 · 2020年2月15日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员