Real-world dynamic scene deblurring has long been a challenging task since paired blurry-sharp training data is unavailable. Conventional Maximum A Posteriori estimation and deep learning-based deblurring methods are restricted by handcrafted priors and synthetic blurry-sharp training pairs respectively, thereby failing to generalize to real dynamic blurriness. To this end, we propose a Neural Maximum A Posteriori (NeurMAP) estimation framework for training neural networks to recover blind motion information and sharp content from unpaired data. The proposed NeruMAP consists of a motion estimation network and a deblurring network which are trained jointly to model the (re)blurring process (i.e. likelihood function). Meanwhile, the motion estimation network is trained to explore the motion information in images by applying implicit dynamic motion prior, and in return enforces the deblurring network training (i.e. providing sharp image prior). The proposed NeurMAP is an orthogonal approach to existing deblurring neural networks, and is the first framework that enables training image deblurring networks on unpaired datasets. Experiments demonstrate our superiority on both quantitative metrics and visual quality over state-of-the-art methods. Codes are available on https://github.com/yjzhang96/NeurMAP-deblur.
翻译:长期以来,现实-世界的动态场面模糊化一直是一项具有挑战性的任务,因为没有关于模糊不清的培训数据。常规最高假设估计和深层次的基于学习的模糊化方法分别受到手工制作的前科和合成的模糊化培训对配对的限制,因此无法概括到真实的动态模糊化。为此,我们提议为培训神经网络建立一个神经网络的神经最大假设(NeurMAP)估计框架,以从未更新的数据中恢复盲目的运动信息和锐利内容。拟议的NeruMAP包括一个运动估计网络和一个以联合训练为(再)闪烁过程模型(即可能性功能)的模糊化网络。与此同时,运动估计网络接受培训,以通过应用隐含的动态前期运动来探索图像中的运动信息,而反过来,则实施分流网络培训(即先提供锐利的图像)。拟议的NeurMAP是对现有分流神经网络的一种直观方法,也是第一个能够对不透明/Nblurring 网络进行关于可视- Ramburling 系统质量数据设置的图像分流网络进行训练的框架。