In this paper we study the nonuniform fast Fourier transform with nonequispaced spatial and frequency data (NNFFT) and the fast sinc transform as its application. The computation of NNFFT is mainly based on the nonuniform fast Fourier transform with nonequispaced spatial nodes and equispaced frequencies (NFFT). The NNFFT employs two compactly supported, continuous window functions. For fixed nonharmonic bandwidth, it is shown that the error of the NNFFT with two sinh-type window functions has an exponential decay with respect to the truncation parameters of the used window functions. As an important application of the NNFFT, we present the fast sinc transform. The error of the fast sinc transform is estimated as well.
翻译:在本文中,我们用无间距空间和频率数据(NNFFT)研究非统一的快速傅里叶变换,并研究其应用中的快速螺旋变换。NNFFFT的计算主要基于非统一的快速傅里叶变换,带有无间距空间节点和等宽频(NFFFT),NFFFT使用两个紧凑支持的连续窗口功能。对于固定的非和谐带宽,显示NNFFFT有两个正弦型窗口功能的错误,与旧窗口功能的脱轨参数相比,会发生指数衰变。作为NNFFT的一个重要应用,我们展示了快速的罪变。快速罪变的错误也是估计的。