Deep-unfolding neural networks (NNs) have received great attention since they achieve satisfactory performance with relatively low complexity. Typically, these deep-unfolding NNs are restricted to a fixed-depth for all inputs. However, the optimal number of layers required for convergence changes with different inputs. In this paper, we first develop a framework of deep deterministic policy gradient (DDPG)-driven deep-unfolding with adaptive depth for different inputs, where the trainable parameters of deep-unfolding NN are learned by DDPG, rather than updated by the stochastic gradient descent algorithm directly. Specifically, the optimization variables, trainable parameters, and architecture of deep-unfolding NN are designed as the state, action, and state transition of DDPG, respectively. Then, this framework is employed to deal with the channel estimation problem in massive multiple-input multiple-output systems. Specifically, first of all we formulate the channel estimation problem with an off-grid basis and develop a sparse Bayesian learning (SBL)-based algorithm to solve it. Secondly, the SBL-based algorithm is unfolded into a layer-wise structure with a set of introduced trainable parameters. Thirdly, the proposed DDPG-driven deep-unfolding framework is employed to solve this channel estimation problem based on the unfolded structure of the SBL-based algorithm. To realize adaptive depth, we design the halting score to indicate when to stop, which is a function of the channel reconstruction error. Furthermore, the proposed framework is extended to realize the adaptive depth of the general deep neural networks (DNNs). Simulation results show that the proposed algorithm outperforms the conventional optimization algorithms and DNNs with fixed depth with much reduced number of layers.


翻译:深重神经网络(NNS) 因其在相对复杂程度较低的情况下取得了令人满意的业绩而得到了极大关注。 通常, 这些深重的 NNS 被限制在对所有投入的固定深度。 然而, 与不同投入的趋同变化所需的最佳层数 。 在本文中, 我们首先开发一个深度的确定性政策梯度(DDPG) 驱动的深度和不同投入的适应性深度框架, 其中, DDPG 学习了深重重的 NNE 的可训练参数, 而不是直接通过随机的梯度梯度下移算法进行更新。 具体地说, 优化变量、 可训练参数和深重解 NNNNNS 的架构, 被设计为DDP 的状态、 动作和状态过渡。 然后, 这个框架被用来在大型多投入的多输出系统中处理频道估算问题。 具体地说, 首先, 我们用离网基础的频道估算(SB- L) 以稀薄的深度算法进行稀薄的深度的深度计算。 其次, SB- 以最深重的轨道的不断的计算算法将SDL 引入的系统进行到一个基于SDL 的升级的升级的升级的升级的系统, 结构的升级的升级的升级的系统, 将显示的升级到以显示到SDL 的升级的升级的升级到SL 。 的升级到一个基于SL 。 的升级的系统, 的系统结构结构结构结构结构的升级的计算法 。 将显示到基于的升级的升级到以显示的升级的升级的升级的升级的升级的升级的变式结构结构结构结构结构结构 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
45+阅读 · 2020年10月31日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月30日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员