Automated Machine Learning with ensembling (or AutoML with ensembling) seeks to automatically build ensembles of Deep Neural Networks (DNNs) to achieve qualitative predictions. Ensemble of DNNs are well known to avoid over-fitting but they are memory and time consuming approaches. Therefore, an ideal AutoML would produce in one single run time different ensembles regarding accuracy and inference speed. While previous works on AutoML focus to search for the best model to maximize its generalization ability, we rather propose a new AutoML to build a larger library of accurate and diverse individual models to then construct ensembles. First, our extensive benchmarks show asynchronous Hyperband is an efficient and robust way to build a large number of diverse models to combine them. Then, a new ensemble selection method based on a multi-objective greedy algorithm is proposed to generate accurate ensembles by controlling their computing cost. Finally, we propose a novel algorithm to optimize the inference of the DNNs ensemble in a GPU cluster based on allocation optimization. The produced AutoML with ensemble method shows robust results on two datasets using efficiently GPU clusters during both the training phase and the inference phase.


翻译:自动机器学习( 或自动学习( 集合) 寻求自动构建深神经网络( DNNS) 的集合群, 以自动建立深神经网络( DNNS) 的集合群, 以便实现定性预测。 众所周知, DNNS的集合群可以避免过度安装, 但它们是记忆和耗时的方法。 因此, 理想的 AutML 将在一个单一的时间里产生关于准确性和推断速度的不同集合群集。 在以前关于 Automal 的工程中, 寻找最佳模型, 以最大限度地扩大其概括能力, 我们建议一个新的 AutML, 以建立一个由准确和多样的个体模型组成的大库, 以构建聚合群集。 首先, 我们的广泛基准显示, 无同步的超音频带是一种高效和稳健的方法, 以构建大量不同的模型, 以合并这些模型。 然后, 在一个多目标的贪婪算法的基础上, 提出一个新的组合选择方法, 以控制其计算成本来产生准确的集合体。 最后, 我们提出一个新的算法, 以优化地优化地将 DNNS 组合在两个基于配置的组合组组的推算结果。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
专知会员服务
44+阅读 · 2020年10月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
12+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2021年7月20日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
12+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员