项目名称: 基于纳米层修饰界面结构提高仿生材料强度、敏感性的研究

项目编号: No.51303148

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 张洁

作者单位: 西安交通大学

项目金额: 25万元

中文摘要: 无论在天然生物材料还是人造复合材料中,界面结构都被认为是决定材料宏观性能的关键因素之一,它控制复合材料的所有性质和服役行为,并且影响着复合材料整体对载荷的响应。因此,本项目拟模仿天然材料"完美"的纳-微多尺度界面结构,采用电泳、原子层沉积方法在玻璃纤维以及弹性纤维表面均匀沉积碳纳米管、氧化锌等纳米涂层,继而与不同聚合物基体(环氧树脂,弹性硅橡胶)复合制备多功能仿生材料。通过纳米涂层扩大界面化学键合和物理吸附,增强界面机械啮合等效应,提高界面粘接强度。测试界面微区以及材料的整体性能,揭示材料微结构与宏观性能之间的关系,确立更有效的复合材料界面强化技术和方法。提出利用纤维定向排布实现拟生物体神经网络结构的新方法,并研究界面区域的纳米网络对材料的环境敏感性的影响,以制备对微应力/应变、温度、湿度变化具有高度敏感性,灵活弯曲,可应用于人造皮肤、肌肉等的仿生材料。

中文关键词: 纳米层;界面;多功能复合材料;仿生材料;临界厚度

英文摘要: Inspired by the multi-scale interphase in biomaterials, we will design and prepare new multifunctional biomimetic composites through introducing ultra-thin nanofilms into the interphase between fibre and matrix. It is well known that the interphase between reinforcement and matrix plays a critical role in the performance of both natural (or biological) materials and man-made composites. The interphase serves as a transferring region of stress, heat, electricity, and so on. According to the investigations of interphase in biomaterials, it is found that the multi-scale interphase brings about many unique performances for materials. Bones serve as an example of those hierarchically structured bio materials and have been studied with the fibre reinforced composite model. The reinforced interphase by mineral-protein offers a balance between stiffness and flexibility, which results in a high strength as well as light-weight materials. From a design standpoint, the interphase can potientially be tailored, through appropriate manipulation of the processing and material variables, derived from fundamental understanding and modelling, to achieve the desired properties and performance of the composites. Consequently, we will deposite various nano-films,including carbon nanotube(CNT), ZnO and so on, onto fibres' surface to

英文关键词: Nano-layer;Interphase;Multifunctional composites;Artificial materials;Critical thickness

成为VIP会员查看完整内容
0

相关内容

【ICML2022】药物结合结构预测的几何深度学习
专知会员服务
25+阅读 · 2022年5月24日
人工智能到深度学习:药物发现的机器智能方法
专知会员服务
36+阅读 · 2022年5月6日
专知会员服务
50+阅读 · 2021年7月18日
专知会员服务
31+阅读 · 2021年5月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
7个实用的深度学习技巧
机器学习算法与Python学习
16+阅读 · 2019年3月6日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年5月27日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
小贴士
相关主题
相关资讯
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
7个实用的深度学习技巧
机器学习算法与Python学习
16+阅读 · 2019年3月6日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员