In medical practice, the contribution of information technology can be considerable. Most of these practices include the images that medical assistance uses to identify different pathologies of the human body. One of them is X-ray images which cover much of our work in this paper. Chest x-rays have played an important role in Covid 19 identification and diagnosis. The Covid 19 virus has been declared a global pandemic since 2020 after the first case found in Wuhan China in December 2019. Our goal in this project is to be able to classify different chest X-ray images containing Covid 19, viral pneumonia, lung opacity and normal images. We used CNN architecture and different pre-trained models. The best result is obtained by the use of the ResNet 18 architecture with 94.1% accuracy. We also note that The GPU execution time is optimal in the case of AlexNet but what requires our attention is that the pretrained models converge much faster than the CNN. The time saving is very considerable. With these results not only will solve the diagnosis time for patients, but will provide an interesting tool for practitioners, thus helping them in times of strong pandemic in particular.
翻译:在医疗实践方面,信息技术的贡献可能相当大。其中多数做法包括医疗援助用于确定人体不同病理的图像。其中之一是X光图像,覆盖了本文中我们大部分工作内容。切斯特X光在Covid 19的识别和诊断中发挥了重要作用。Covid 19病毒在2019年12月在中国武汉发现第一个病例之后,自2020年以来被宣布为全球流行病。我们这个项目的目标是能够对含有Covid 19、病毒肺炎、肺炎、肺炎和正常图像的不同胸部X光图像进行分类。我们使用了CNN的架构和各种预先培训的模型。最佳结果来自使用ResNet 18 结构的精确度为94.1 % 。我们还注意到,在AlexNet 的情况下,GPU执行时间是最佳的,但需要我们注意的是,经过预先训练的模型比CNN还快得多。节省的时间是相当可观的。这些结果不仅能解决病人的诊断时间,而且能为开业者提供一个有趣的工具,从而在非常严重的大流行病时期帮助他们。