State of the art domain decomposition algorithms for large-scale boundary value problems (with $M\gg 1$ degrees of freedom) suffer from bounded strong scalability because they involve the synchronisation and communication of workers inherent to iterative linear algebra. Here, we introduce PDDSparse, a different approach to scientific supercomputing which relies on a "Feynman-Kac formula for domain decomposition". Concretely, the interfacial values (only) are determined by a stochastic, highly sparse linear system $G(\omega){\vec u}={\vec b}(\omega)$ of size ${\cal O}(\sqrt{M})$, whose coefficients are constructed with Monte Carlo simulations-hence embarrassingly in parallel. In addition to a wider scope for strong scalability in the deep supercomputing regime, PDDSparse has built-in fault tolerance and is ideally suited for GPUs. A proof of concept example with up to 1536 cores is discussed in detail.
翻译:用于大型边界值问题的艺术域分解算法( 以$M\gg 1美元度自由度计算) 的状态 受 约束性强的可伸缩性强, 因为它们涉及迭代线性代数所固有的工人的同步和交流。 在这里, 我们引入了 PDDSparse, 这是一种不同的科学超对调方法, 它依赖于“ Feynman- Kac 公式 以 域分解 ” 。 具体地说, 内部值( 仅) 是由一个随机的、 高度分散的线性系统 $G (\ omega) { {vec b} (\ omega) $ $ $ percal O} (\\\ qrt{ M}) $ ( omga) 。 其系数与 Monte Carlo 模拟- hence 平行构建的系数是令人尴尬的。 PDDDSparse ( ) 除了在深超交式系统中具有很强的可伸缩性范围外, 外, PDDDDSparse 也适合 GPUPUs.