We consider a communication cell comprised of Internet-of-Things (IoT) nodes transmitting to a common Access Point (AP). The nodes in the cell are assumed to generate data samples periodically, which are to be transmitted to the AP. The AP hosts a machine learning model, such as a neural network, which is trained on the received data samples to make accurate inferences. We address the following tradeoff: The more often the IoT nodes transmit, the higher the accuracy of the inference made by the AP, but also the higher the energy expenditure at the IoT nodes. We propose a data filtering scheme employed by the IoT nodes, which we refer to as distributed importance filtering in order to filter out redundant data samples already at the IoT nodes. The IoT nodes do not have large on-device machine learning models and the data filtering scheme operates under periodic instructions from the model placed at the AP. The proposed scheme is evaluated using neural networks on a benchmark machine vision dataset, as well as in two practical scenarios: leakage detection in water distribution networks and air-pollution detection in urban areas. The results show that the proposed scheme offers significant benefits in terms of network longevity as it preserves the devices' resources, whilst maintaining high inference accuracy. Our approach reduces the the computational complexity for training the model and obviates the need for data pre-processing, which makes it highly applicable in practical IoT scenarios.


翻译:我们考虑的是由互联网连接节点组成的通信单元。假设该单元的节点是定期生成数据样本,数据样本将传送给AP。AP是一个机器学习模型,例如神经网络,对接收的数据样本进行培训,以便作出准确的推理。我们处理的是以下权衡:IoT节点传输的频率越高,AP的推论准确度越高,IoT节点的能源支出越高。我们建议采用IoT节点采用的数据过滤机制,我们称之为分散式重要过滤机制,以过滤已经存在于IoT节点的多余数据样本。IoT节点没有大型的在离子机学习模型上进行准确的测试,数据过滤机制在AP模型的定期指示下运作。拟议办法在基准机器视觉数据集中使用神经网络进行评估,并在两种实际假设中使用:在IoT节点中进行渗漏检测,我们在Iot节点上进行分配网络的分解,在高清晰度的计算方法下,在城市地区进行数据检测时将获得显著的计算结果。IoT节点的计算方法,在维护了我们测测测测测测测测的高度的系统中,从而降低了我们测测测测测测测测测测测测测测测数据系统。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
自动结构变分推理,Automatic structured variational inference
专知会员服务
38+阅读 · 2020年2月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
7+阅读 · 2019年3月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年1月15日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
7+阅读 · 2019年3月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员