We introduce a symmetric fractional-order reduction (SFOR) method to construct numerical algorithms on general nonuniform temporal meshes for semilinear fractional diffusion-wave equations. By using the novel order reduction method, the governing problem is transformed to an equivalent coupled system, where the explicit orders of time-fractional derivatives involved are all $\alpha/2$ $(1<\alpha<2)$. The linearized L1 scheme and Alikhanov scheme are then proposed on general time meshes. Under some reasonable regularity assumptions and weak restrictions on meshes, the optimal convergence is derived for the two kinds of difference schemes by $H^2$ energy method. An adaptive time stepping strategy which based on the (fast linearized) L1 and Alikhanov algorithms is designed for the semilinear diffusion-wave equations. Numerical examples are provided to confirm the accuracy and efficiency of proposed algorithms.


翻译:我们引入了一种对称分序削减法(SFOR),以构建用于半线性分散波方程式的普通非统一时间间间隔的数值算法。通过使用新颖的分流扩散波方程式削减法,治理问题被转化成一个相当的组合系统,在这个系统中,所涉时间折射衍生物的明确顺序均为$/alpha/2美元(1 ⁇ alpha < 2美元),然后在一般时间间间隔中提出线性L1计划和Alikhanov计划。根据某些合理的常规假设和对mishes的微弱限制,两种差异方案的最佳趋同法是2美元能源法。基于(快速线性)L1和Alikhanov 算法的适应性时间阶梯战略是为半线性扩散波方程式设计的。提供了数字实例,以证实提议的算法的准确性和效率。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
《自然》(20190829出版)一周论文导读
科学网
6+阅读 · 2019年8月30日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Reduced order models for Lagrangian hydrodynamics
Arxiv
0+阅读 · 2021年4月26日
Arxiv
0+阅读 · 2021年4月23日
VIP会员
相关资讯
《自然》(20190829出版)一周论文导读
科学网
6+阅读 · 2019年8月30日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员