Stochastic Galerkin formulations of the two-dimensional shallow water systems parameterized with random variables may lose hyperbolicity, and hence change the nature of the original model. In this work, we present a hyperbolicity-preserving stochastic Galerkin formulation by carefully selecting the polynomial chaos approximations to the nonlinear terms of $(q^x)^2/h, (q^y)^2/h$, and $(q^xq^y)/h$ in the shallow water equations. We derive a sufficient condition to preserve the hyperbolicity of the stochastic Galerkin system which requires only a finite collection of positivity conditions on the stochastic water height at selected quadrature points in parameter space. Based on our theoretical results for the stochastic Galerkin formulation, we develop a corresponding well-balanced hyperbolicity-preserving central-upwind scheme. We demonstrate the accuracy and the robustness of the new scheme on several challenging numerical tests.
翻译:以随机变量参数参数化的二维浅水系统的Stocatic Galerkin配方物可能会失去超偏差,从而改变原始模型的性质。 在这项工作中,我们通过仔细选择多角度混乱近似于(qx)2美元(h)、(qy)2美元/h美元和非线性条件($)(qxq)2/h美元)和(qxqqQ ⁇ y)/h美元等浅水方程的超偏差配方物来呈现出超偏差的加勒金系统。 我们得出足够的条件来保持该系统超偏差性,它只需要在参数空间中某些四面形点的随机水高度上有限地收集假设条件。 根据我们关于超偏差加勒金配方物的理论结果,我们开发了一个相应的平衡的超偏差- 保全中上风方方方方程式。 我们展示了几项具有挑战性的数字测试的新办法的准确性和稳健性。