We consider the problem of minimizing social cost in atomic congestion games and show, perhaps surprisingly, that efficiently computed taxation mechanisms yield the same performance achievable by the best polynomial time algorithm, even when the latter has full control over the players' actions. It follows that no other tractable approach geared at incentivizing desirable system behavior can improve upon this result, regardless of whether it is based on taxations, coordination mechanisms, information provision, or any other principle. In short: Judiciously chosen taxes achieve optimal approximation. Three technical contributions underpin this conclusion. First, we show that computing the minimum social cost is NP-hard to approximate within a given factor depending solely on the admissible resource costs. Second, we design a tractable taxation mechanism whose efficiency (price of anarchy) matches this hardness factor, and thus is optimal. As these results extend to coarse correlated equilibria, any no-regret algorithm inherits the same performances, allowing us to devise polynomial time algorithms with optimal approximation.
翻译:我们考虑在原子拥堵游戏中尽量减少社会成本的问题,并表明,也许令人惊讶的是,有效计算税收机制能够产生最佳多元时间算法所能达到的相同业绩,即使后者完全控制了参与者的行为。 因此,任何旨在激励理想系统行为的其他可移植方法都无法从这一结果中得到改善,而不管其依据是税收、协调机制、信息提供还是任何其他原则。 简而言之,明智选择的税收能够达到最佳近似。三种技术贡献支持了这一结论。 首先,我们表明,计算最低社会成本很难在某一因素中估计到仅取决于可接受资源成本的近似值。 其次,我们设计一种可移动的税收机制,其效率(无政府状态价格)与这一硬性因素相匹配,因此是最佳的。 这些结果延伸到了粗糙的相对平衡,任何无差异的算法都会继承同样的表现,从而使我们能够以最佳近似方式设计多时算法。