Computing in-memory (CiM) has emerged as an attractive technique to mitigate the von-Neumann bottleneck. Current digital CiM approaches for in-memory operands are based on multi-wordline assertion for computing bit-wise Boolean functions and arithmetic functions such as addition. However, most of these techniques, due to the many-to-one mapping of input vectors to bitline voltages, are limited to CiM of commutative functions, leaving out an important class of computations such as subtraction. In this paper, we propose a CiM approach, which solves the mapping problem through an asymmetric wordline biasing scheme, enabling (a) simultaneous single-cycle memory read and CiM of primitive Boolean functions (b) computation of any Boolean function and (c) CiM of non-commutative functions such as subtraction and comparison. While the proposed technique is technology-agnostic, we show its utility for ferroelectric transistor (FeFET)-based non-volatile memory. Compared to the standard near-memory methods (which require two full memory accesses per operation), we show that our method can achieve a full scale two-operand digital CiM using just one memory access, leading to a 23.2% - 72.6% decrease in energy-delay product (EDP).


翻译:模拟计算机( CiM) 已成为一种减轻 von- Neumann 瓶颈的有吸引力的技术。 目前用于模拟操作的数码 CIM 方法基于计算比特布尔函数和算术函数( 如添加) 的多行词主张。 但是,由于将输入矢量进行多到一的映射以比特线电压,这些技术大多限于对通量功能的CiM, 留下一个重要的计算类别, 如减法。 在本文中, 我们提议了一种 Cim 方法, 通过不对称的单行偏差方案解决绘图问题, 使(a) 同步的单周期内存读取和原始布尔函数的 CiM (b) 计算任何布尔函数和(c) 任何非互换函数( 如减法和比较) 的 CiM 。 虽然拟议的技术是技术- 亚特技术, 我们展示了它对于基于非挥发式的计算器( FeFET) 的非挥发式内存的效用。 与标准的单行偏差偏差偏移法方案相比,, 使( ) 能够同时读和原始布尔功能读和原始布尔功能功能功能功能的 Ci- 的 Ci- 的 Ci- 的 Ce- 级操作能够以两种全缩缩算算算算方法, 23

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2022年4月18日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员