A discontinuous Galerkin pressure correction numerical method for solving the incompressible Navier-Stokes equations is formulated and analyzed. We prove unconditional stability of the propose scheme. Convergence of the discrete velocity is established by deriving a priori error estimates. Numerical results verify the convergence rates.
翻译:用于解析无法压缩的 Navier-Stokes 方程式的不连续的 Galerkin 压力校正数字方法得到制定和分析。 我们证明拟议方案无条件稳定。 离散速度的趋同是通过先验错误估计确定的。 数字结果可以验证趋同率 。