We propose a stochastic collocation method based on the piecewise constant interpolation on the probability space combined with a finite volume method to solve the compressible Navier-Stokes system at the nodal points. We show convergence of numerical solutions to a statistical solution of the Navier-Stokes system on condition that the numerical solutions are bounded in probability. The analysis uses the stochastic compactness method based on the Skorokhod/Jakubowski representation theorem and the criterion of convergence in probability due to Gy\"ongy and Krylov.
翻译:我们建议一种随机同化方法,其依据是概率空间的细小常数内插法,加上在节点解决压缩的纳维-斯托克斯系统的有限体积方法。我们显示了与纳维-斯托克斯系统统计解决方案的数字解决方案的趋同,条件是数字解决方案的概率是结合的。分析使用了基于Skorokhod/Jakubowski代表理论的随机压紧法,以及Gy\"ongy和Krylov造成的概率趋同标准。