Faster-than-Nyquist (FTN) signaling is a promising non-orthogonal pulse modulation technique that can improve the spectral efficiency (SE) of next generation communication systems at the expense of higher detection complexity to remove the introduced inter-symbol interference (ISI). In this paper, we investigate the detection problem of ultra high-order quadrature-amplitude modulation (QAM) FTN signaling where we exploit a mathematical programming technique based on the alternating directions multiplier method (ADMM). The proposed ADMM sequence estimation (ADMMSE) FTN signaling detector demonstrates an excellent trade-off between performance and computational effort enabling successful detection and SE gains for QAM modulation orders as high as 64K (65,536). The complexity of the proposed ADMMSE detector is polynomial in the length of the transmit symbols sequence and its sensitivity to the modulation order increases only logarithmically. Simulation results show that for 16-QAM, the proposed ADMMSE FTN signaling detector achieves comparable SE gains to the generalized approach semidefinite relaxation-based sequence estimation (GASDRSE) FTN signaling detector, but at an experimentally evaluated much lower computational time. Simulation results additionally show SE gains for modulation orders starting from 4-QAM, or quadrature phase shift keying (QPSK), up to and including 64K-QAM when compared to conventional Nyquist signaling. The very low computational effort required makes the proposed ADMMSE detector a practically promising FTN signaling detector for both low order and ultra high-order QAM FTN signaling systems.


翻译:高于Nyquist(FTN)的信号是一种前景良好的非垂直脉冲调制技术,可以提高下一代通信系统的光谱效率(SE),而降低探测复杂性,消除引入的同义干扰(ISI)。 在本文中,我们调查超高阶二次振动调制模(QAM)FTN信号的探测问题,我们利用基于交替方向乘数法的数学编程技术(ADMMM(ADMSE)),拟议的ADMMM(ADMMSE)FTN信号检测仪显示,在性能和计算努力之间实现了极佳的交换,使QAM调制的光谱效率得以成功检测和SE的SE增益,在传输符号序列的长度和对调制音频序列的敏感度只会提高逻辑性。 拟议的ADMMSE(AMSE) 信号测算(ADMSE) 与GMER(FMTER) 快速测算(FMAS) 的测算结果,在SADRADR) 测算中,在SEADRADR 的测算中,在SADRADRADR 的测算中,需要额外测算。

0
下载
关闭预览

相关内容

专知会员服务
16+阅读 · 2021年5月21日
专知会员服务
26+阅读 · 2021年4月2日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
87+阅读 · 2020年5月11日
专知会员服务
61+阅读 · 2020年3月19日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
已删除
将门创投
6+阅读 · 2019年9月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
8+阅读 · 2021年4月21日
Arxiv
5+阅读 · 2019年2月28日
Arxiv
5+阅读 · 2018年10月4日
Arxiv
5+阅读 · 2016年12月29日
VIP会员
相关资讯
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
已删除
将门创投
6+阅读 · 2019年9月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员