Being effective and efficient is essential to an object detector for practical use. To meet these two concerns, we comprehensively evaluate a collection of existing refinements to improve the performance of PP-YOLO while almost keep the infer time unchanged. This paper will analyze a collection of refinements and empirically evaluate their impact on the final model performance through incremental ablation study. Things we tried that didn't work will also be discussed. By combining multiple effective refinements, we boost PP-YOLO's performance from 45.9% mAP to 49.5% mAP on COCO2017 test-dev. Since a significant margin of performance has been made, we present PP-YOLOv2. In terms of speed, PP-YOLOv2 runs in 68.9FPS at 640x640 input size. Paddle inference engine with TensorRT, FP16-precision, and batch size = 1 further improves PP-YOLOv2's infer speed, which achieves 106.5 FPS. Such a performance surpasses existing object detectors with roughly the same amount of parameters (i.e., YOLOv4-CSP, YOLOv5l). Besides, PP-YOLOv2 with ResNet101 achieves 50.3% mAP on COCO2017 test-dev. Source code is at https://github.com/PaddlePaddle/PaddleDetection.
翻译:有效且高效对于物体探测器的实际使用至关重要。 为了解决这两个问题, 我们全面评估一系列现有的改进, 以提高 PP- YOLO 的性能, 同时几乎保持时间不变。 本文将分析一系列改进, 并通过增量消化研究从经验上评估其对最终模型性能的影响。 我们尝试过的不起作用的东西也将讨论。 通过结合多种有效的改进, 我们将 PP- YOLO 的性能从45.9% mAP 提高到49.5 % mAP CO2017 测试- dev。 由于已经做了显著的性能差, 我们提出了PPP- YOLOv2 。 在速度方面, PP- YOLOv2 运行于68.9 FPS, 640x640 输入大小。 我们尝试过的不起作用的东西也将被讨论。 通过多功能改进 PPPP-YOLODOv2 的性能, 达到106.5FPS。 这种性能超过现有的物体探测器, 大约为YOVOL 。 在VOVOL 上,, 达到 OSOVPOVL 的值为 。