Designing Luenberger observers for nonlinear systems involves the challenging task of transforming the state to an alternate coordinate system, possibly of higher dimensions, where the system is asymptotically stable and linear up to output injection. The observer then estimates the system's state in the original coordinates by inverting the transformation map. However, finding a suitable injective transformation whose inverse can be derived remains a primary challenge for general nonlinear systems. We propose a novel approach that uses supervised physics-informed neural networks to approximate both the transformation and its inverse. Our method exhibits superior generalization capabilities to contemporary methods and demonstrates robustness to both neural network's approximation errors and system uncertainties.
翻译:----
设计非线性系统的Luenberger观测器涉及将状态转换为另一种坐标系的具有挑战性的任务,可能是更高维度的坐标系,在该坐标系中,系统渐近稳定并且包含输出注入的线性部分。然后,观测器通过反转转换映射来估计原始坐标系中的系统状态。然而,找到一个合适的可导出逆函数的可逆的单射转换仍然是一项主要挑战。我们提出了一种新的方法,利用受监督的物理信息神经网络来逼近转换及其逆函数。我们的方法具有比当代方法更强的泛化能力,并表现出对神经网络逼近误差和系统不确定性的鲁棒性。