In critical IoT environments, such as smart homes and industrial systems, effective Intrusion Detection Systems (IDS) are essential for ensuring security. However, developing robust IDS solutions remains a significant challenge. Traditional machine learning-based IDS models typically require large datasets, but data sharing is often limited due to privacy and security concerns. Federated Learning (FL) presents a promising alternative by enabling collaborative model training without sharing raw data. Despite its advantages, FL still faces key challenges, such as data heterogeneity (non-IID data) and high energy and computation costs, particularly for resource constrained IoT devices. To address these issues, this paper proposes OptiFLIDS, a novel approach that applies pruning techniques during local training to reduce model complexity and energy consumption. It also incorporates a customized aggregation method to better handle pruned models that differ due to non-IID data distributions. Experiments conducted on three recent IoT IDS datasets, TON_IoT, X-IIoTID, and IDSIoT2024, demonstrate that OptiFLIDS maintains strong detection performance while improving energy efficiency, making it well-suited for deployment in real-world IoT environments.
翻译:暂无翻译