We propose a novel approach to image segmentation based on combining implicit spline representations with deep convolutional neural networks. This is done by predicting the control points of a bivariate spline function whose zero-set represents the segmentation boundary. We adapt several existing neural network architectures and design novel loss functions that are tailored towards providing implicit spline curve approximations. The method is evaluated on a congenital heart disease computed tomography medical imaging dataset. Experiments are carried out by measuring performance in various standard metrics for different networks and loss functions. We determine that splines of bidegree $(1,1)$ with $128\times128$ coefficient resolution performed optimally for $512\times 512$ resolution CT images. For our best network, we achieve an average volumetric test Dice score of almost 92%, which reaches the state of the art for this congenital heart disease dataset.
翻译:我们提出了一种基于将隐性样板表示与深卷变神经网络相结合的图像分割新颖方法。 这是通过预测一个双变量样板函数的控制点, 其零位表示分离界限。 我们调整了几个现有的神经网络结构并设计了新的损失功能, 以提供隐性样条曲线近似值为定制。 该方法根据先天性心脏病计算透视医学成像数据集进行评估。 实验是通过测量不同网络和损失函数的各种标准度的性能进行。 我们确定双度双倍( 1,1,1,1,1,1,1,1,1,1,1,2,28美元)乘以128美元系数分辨率, 以512, 512美元分辨率CT图像为最佳表现。 对于我们的最佳网络,我们达到了接近于先天性心脏病数据组的近92%的平均体积测试骰分。