With deep learning (DL) outperforming conventional methods for different tasks, much effort has been devoted to utilizing DL in various domains. Researchers and developers in the traffic domain have also designed and improved DL models for forecasting tasks such as estimation of traffic speed and time of arrival. However, there exist many challenges in analyzing DL models due to the black-box property of DL models and complexity of traffic data (i.e., spatio-temporal dependencies). Collaborating with domain experts, we design a visual analytics system, AttnAnalyzer, that enables users to explore how DL models make predictions by allowing effective spatio-temporal dependency analysis. The system incorporates dynamic time warping (DTW) and Granger causality tests for computational spatio-temporal dependency analysis while providing map, table, line chart, and pixel views to assist user to perform dependency and model behavior analysis. For the evaluation, we present three case studies showing how AttnAnalyzer can effectively explore model behaviors and improve model performance in two different road networks. We also provide domain expert feedback.
翻译:深度学习(DL)超越了不同任务的常规方法,在各个领域都为利用DL做出了大量努力;交通领域的研究人员和开发商还设计并改进了用于预测任务的DL模型,如估计交通速度和抵达时间等;然而,由于DL模型的黑盒属性和交通数据的复杂性(即空间-时依赖性),在分析DL模型方面存在许多挑战;与域专家合作,我们设计了一个视觉分析系统AttnAnalyzer,使用户能够探索DL模型如何通过允许有效的spatio-时空依赖性分析来作出预测;该系统包括动态时间扭曲(DTW)和用于计算时空依赖性分析的重因果测试,同时提供地图、表、线图和像素观点,以协助用户进行依赖性和模型行为分析;关于评价,我们提出三个案例研究,说明AttnAlyzer如何有效地探索模型行为,并改进两个不同公路网络的模型性能。我们还提供了域专家反馈。