Owing to recent advances in thoracic electrical impedance tomography, a patient's hemodynamic function can be noninvasively and continuously estimated in real-time by surveilling a cardiac volume signal associated with stroke volume and cardiac output. In clinical applications, however, a cardiac volume signal is often of low quality, mainly because of the patient's deliberate movements or inevitable motions during clinical interventions. This study aims to develop a signal quality indexing method that assesses the influence of motion artifacts on transient cardiac volume signals. The assessment is performed on each cardiac cycle to take advantage of the periodicity and regularity in cardiac volume changes. Time intervals are identified using the synchronized electrocardiography system. We apply divergent machine-learning methods, which can be sorted into discriminative-model and manifold-learning approaches. The use of machine-learning could be suitable for our real-time monitoring application that requires fast inference and automation as well as high accuracy. In the clinical environment, the proposed method can be utilized to provide immediate warnings so that clinicians can minimize confusion regarding patients' conditions, reduce clinical resource utilization, and improve the confidence level of the monitoring system. Numerous experiments using actual EIT data validate the capability of cardiac volume signals degraded by motion artifacts to be accurately and automatically assessed in real-time by machine learning. The best model achieved an accuracy of 0.95, positive and negative predictive values of 0.96 and 0.86, sensitivity of 0.98, specificity of 0.77, and AUC of 0.96.
翻译:在临床应用中,心脏量信号往往质量低,主要是因为病人在临床干预期间故意移动或不可避免地移动。本研究旨在开发一种信号质量指数方法,评估运动用具对心跳量信号的影响;对每个心脏周期进行评估,以利用心量变化的周期性和定期性;利用同步心电图系统确定时间间隔;我们采用不同的机器学习方法,这些方法可分为歧视型模型和多种学习方法;使用机器学习可能适合我们的实时监测应用,这需要快速推断和自动化以及高度准确性。在临床环境中,可以使用拟议方法提供直接警告,以便临床医生能够尽量减少对病人状况的混淆,减少临床资源利用,并通过监测周期性心电图的周期性评估时间间隔;通过测试机压型数据,通过机压性能的准确性测试,通过机压性能、机压性能的准确性能,通过机压性能、机压性能、机压性能、机压性能、机压性能、机压性能、机压性能、机压性能、机压性能、机压性、机压性能、机压性能、机压性能测试、机压性能、机压性能、机能、机压力、机能、机能、机压性能、机压性能、机压力、机能、机能、机压性能、机能、机压力能、机能、机能、机能、机能、机能、机能、机压性能、机能、机压性能、机压性能、机压性能、机能、机能、机压性能、性能、机能、机能、机能性能、机能、机压性能、机能、机能、机能、机能、机压性能、机能、机压性能、机能、机能、机能、机能、机能、机能、机压性能、机压性能、机能、机能、机能、机能、机能、机能、机能、机能、机能、机能、机能、机能、机能、机能、机能、机能、机能、机能、机能性能性能性能性能性能性能、机能性能性能