Federated Learning (FL) is a distributed machine learning approach where multiple clients work together to solve a machine learning task. One of the key challenges in FL is the issue of partial participation, which occurs when a large number of clients are involved in the training process. The traditional method to address this problem is randomly selecting a subset of clients at each communication round. In our research, we propose a new technique and design a novel regularized client participation scheme. Under this scheme, each client joins the learning process every $R$ communication rounds, which we refer to as a meta epoch. We have found that this participation scheme leads to a reduction in the variance caused by client sampling. Combined with the popular FedAvg algorithm (McMahan et al., 2017), it results in superior rates under standard assumptions. For instance, the optimization term in our main convergence bound decreases linearly with the product of the number of communication rounds and the size of the local dataset of each client, and the statistical term scales with step size quadratically instead of linearly (the case for client sampling with replacement), leading to better convergence rate $\mathcal{O}\left(\frac{1}{T^2}\right)$ compared to $\mathcal{O}\left(\frac{1}{T}\right)$, where $T$ is the total number of communication rounds. Furthermore, our results permit arbitrary client availability as long as each client is available for training once per each meta epoch.


翻译:联邦学习(FL) 是一种分散式的机器学习方法,让多个客户一起合作解决机器学习任务。 FL 的主要挑战之一是部分参与问题,这是当大量客户参与培训过程时发生的部分参与问题。 解决这一问题的传统方法是随机选择每轮通信的客户子集。 在我们的研究中,我们提出了一个新的技术和设计一个全新的正规化客户参与计划。 在这个计划下,每个客户都加入学习过程,每轮我们称之为超时代的每轮通信,我们称之为超时代的。我们发现,这种参与计划导致客户抽样导致差异的减少。结合流行的 FedAvg算法(McMahan等人,2017年),它导致标准假设下的较高比率。例如,我们的主要趋同期与通信回合数量和每个客户本地数据集的大小成线性结合。 统计术语尺度,一是平级规模,而不是线性客户抽样,导致每类客户总趋一致$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</s>

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
20+阅读 · 2022年10月10日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
11+阅读 · 2021年3月25日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
45+阅读 · 2019年12月20日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Arxiv
20+阅读 · 2022年10月10日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
11+阅读 · 2021年3月25日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
45+阅读 · 2019年12月20日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员