Entity Linking is the task of matching a mention to an entity in a given knowledge base (KB). It contributes to annotating a massive amount of documents existing on the Web to harness new facts about their matched entities. However, existing Entity Linking systems focus on developing models that are typically domain-dependent and robust only to a particular knowledge base on which they have been trained. The performance is not as adequate when being evaluated on documents and knowledge bases from different domains. Approaches based on pre-trained language models, such as Wu et al. (2020), attempt to solve the problem using a zero-shot setup, illustrating some potential when evaluated on a general-domain KB. Nevertheless, the performance is not equivalent when evaluated on a domain-specific KB. To allow for more accurate Entity Linking across different domains, we propose our framework: Cross-Domain Neural Entity Linking (CDNEL). Our objective is to have a single system that enables simultaneous linking to both the general-domain KB and the domain-specific KB. CDNEL works by learning a joint representation space for these knowledge bases from different domains. It is evaluated using the external Entity Linking dataset (Zeshel) constructed by Logeswaran et al. (2019) and the Reddit dataset collected by Botzer et al. (2021), to compare our proposed method with the state-of-the-art results. The proposed framework uses different types of datasets for fine-tuning, resulting in different model variants of CDNEL. When evaluated on four domains included in the Zeshel dataset, these variants achieve an average precision gain of 9%.


翻译:实体链接是一项任务,即在特定知识库(KB)中将提及与某个实体进行匹配。它有助于说明网络上存在的大量文件,以掌握与其相匹配的实体的新事实。然而,现有的实体链接系统侧重于开发典型地以域为依存和稳健的模型,这些模型只与培训它们所基于的特定知识库相匹配。在对不同领域的文件和知识库进行评估时,这种性能并不充分。基于Wu等人(202020年)等经过预先培训的语言模型的方法,试图使用零点显示的设置来解决问题,在对普通域 KB 进行评价时展示一些潜力。然而,在对特定域 KB 进行评价时,这种性能并不相等。为了更精确地将实体链接到不同的领域,我们提出了框架:跨度神经实体链接(CDNEL) 。我们的目标是建立一个单一的系统,以便能够同时连接到一般域模型KB和特定域 KB(202020年)。CDNEL通过从不同的域中学习这些知识库的联合代表空间,在不同的域中,通过外部数据库将数据格式链接到数据系统(20年) 数据系统,这些数据库的变异的计算。

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
28+阅读 · 2022年12月26日
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2022年1月20日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员