Expensive sensors and inefficient algorithmic pipelines significantly affect the overall cost of autonomous machines. However, affordable robotic solutions are essential to practical usage, and their financial impact constitutes a fundamental requirement to employ service robotics in most fields of application. Among all, researchers in the precision agriculture domain strive to devise robust and cost-effective autonomous platforms in order to provide genuinely large-scale competitive solutions. In this article, we present a complete algorithmic pipeline for row-based crops autonomous navigation, specifically designed to cope with low-range sensors and seasonal variations. Firstly, we build on a robust data-driven methodology to generate a viable path for the autonomous machine, covering the full extension of the crop with only the occupancy grid map information of the field. Moreover, our solution leverages on latest advancement of deep learning optimization techniques and synthetic generation of data to provide an affordable solution that efficiently tackles the well-known Global Navigation Satellite System unreliability and degradation due to vegetation growing inside rows. Extensive experimentation and simulations against computer-generated environments and real-world crops demonstrated the robustness and intrinsic generalizability of our methodology that opens the possibility of highly affordable and fully autonomous machines.
翻译:昂贵的传感器和低效的算法管道对自主机器的总体成本产生了重大影响。然而,负担得起的机器人解决方案对于实际使用至关重要,其财政影响构成了在大多数应用领域使用服务机器人的基本要求。其中,精准农业领域的研究人员努力设计稳健和具有成本效益的自主平台,以提供真正的大规模竞争性解决方案。在本篇文章中,我们为以行为基础的作物自主导航提供了一个完整的算法管道,专门设计用于应对低频传感器和季节性变化。首先,我们利用强有力的数据驱动方法为自主机器创造一条可行的路径,仅以实地占用网图信息覆盖作物的全面扩展。此外,我们的解决办法利用了最新发展的深层学习优化技术和合成数据生成的杠杆,以提供负担得起的解决方案,高效解决众所周知的全球导航卫星系统因在行内种植植被而不可靠和退化的问题。针对计算机生成的环境和现实世界作物进行的广泛实验和模拟显示了我们方法的坚固性和内在普遍性,打开了高可负担和完全自主的机器的可能性。