Causal inference using the restricted structural causal model framework hinges largely on the asymmetry between cause and effect from the data generating mechanisms. For linear non-Gaussian noise models and nonlinear additive noise models, the asymmetry arises from non-Gaussianity or nonlinearity, respectively. Despite the fact that this methodology can be adapted to stationary time series, inferring causal relationships from nonstationary time series remains a challenging task. In this work, we focus on slowly-varying nonstationary processes and propose to break the symmetry by exploiting the nonstationarity of the data. Our main theoretical result shows that the causal direction is identifiable in generic cases when cause and effect are connected via a time-varying filter. We propose a causal discovery procedure by leveraging powerful estimates of the bivariate evolutionary spectra. Both synthetic and real-world data simulations that involve high-order and non-smooth filters are provided to demonstrate the effectiveness of our proposed methodology.
翻译:使用限制性结构性因果模型框架的因果关系推断主要取决于数据生成机制因果之间的不对称。对于线性非高加索噪音模型和非线性添加噪音模型而言,不对称分别来自非高加索或非线性。尽管这一方法可以适应固定时间序列,但从非静止时间序列推断因果关系仍是一项艰巨的任务。在这项工作中,我们侧重于缓慢变化的非静止过程,并提议通过利用数据的不静止性来打破对称性。我们的主要理论结果表明,当因果关系通过时间变化的过滤器连接在一起时,一般案例可以识别出因果关系方向。我们提出一个因果发现程序,利用对双轨进化光谱的有力估计。提供涉及高顺序和非移动过滤器的合成和真实世界数据模拟,以证明我们拟议方法的有效性。