The importance of swarm robotics systems in both academic research and real-world applications is steadily increasing. However, to reach widespread adoption, new models that ensure the secure cooperation of large groups of robots need to be developed. This work introduces a novel method to encapsulate cooperative robotic missions in an authenticated data structure known as Merkle tree. With this method, operators can provide the "blueprint" of the swarm's mission without disclosing its raw data. In other words, data verification can be separated from data itself. We propose a system where robots in a swarm, to cooperate towards mission completion, have to "prove" their integrity to their peers by exchanging cryptographic proofs. We show the implications of this approach for two different swarm robotics missions: foraging and maze formation. In both missions, swarm robots were able to cooperate and carry out sequential operations without having explicit knowledge about the mission's high-level objectives. The results presented in this work demonstrate the feasibility of using Merkle trees as a cooperation mechanism for swarm robotics systems in both simulation and real-robot experiments, which has implications for future decentralized robotics applications where security plays a crucial role such as environmental monitoring, infrastructure surveillance, and disaster management.


翻译:在学术研究和现实世界应用中,群装机器人系统的重要性正在稳步提高,然而,为了实现广泛采用,需要开发新的模式,以确保大型机器人群体的安全合作。这项工作引入了一种新的方法,将合作型机器人任务包在一个称为Merkle树的数据结构中。使用这种方法,操作者可以在不披露其原始数据的情况下提供群装机器人任务的“蓝图”而无需披露其原始数据。换句话说,数据核查可以与数据本身分开。我们建议建立一个系统,让在群装机器人的机器人为完成任务而进行合作,我们必须通过交换加密证据,向同行“证明”其完整性。我们展示了这一方法对两个不同的群装机器人任务的影响:成形和磁场形成。在这两个任务中,群装机器人能够合作和进行连续操作,而没有明确了解其原始数据。这项工作的结果表明,在模拟和真实机器人实验中,将蜂架机器人系统作为热型机器人系统的合作机制,必须“保证”其完整性。我们展示了这种方法对两种不同的群装机器人任务的影响:成型和磁场结构。在对未来的监测中,对未来关键的监测作用是分散式机器人应用。

0
下载
关闭预览

相关内容

机器人(英语:Robot)包括一切模拟人类行为或思想与模拟其他生物的机械(如机器狗,机器猫等)。狭义上对机器人的定义还有很多分类法及争议,有些电脑程序甚至也被称为机器人。在当代工业中,机器人指能自动运行任务的人造机器设备,用以取代或协助人类工作,一般会是机电设备,由计算机程序或是电子电路控制。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
56+阅读 · 2021年4月12日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
已删除
将门创投
8+阅读 · 2019年1月4日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年5月26日
Arxiv
6+阅读 · 2018年12月10日
VIP会员
相关VIP内容
专知会员服务
56+阅读 · 2021年4月12日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
已删除
将门创投
8+阅读 · 2019年1月4日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员