We construct explicit deterministic extractors for polynomial images of varieties, that is, distributions sampled by applying a low-degree polynomial map $f : \mathbb{F}_q^r \to \mathbb{F}_q^n$ to an element sampled uniformly at random from a $k$-dimensional variety $V \subseteq \mathbb{F}_q^r$. This class of sources generalizes both polynomial sources, studied by Dvir, Gabizon and Wigderson (FOCS 2007, Comput. Complex. 2009), and variety sources, studied by Dvir (CCC 2009, Comput. Complex. 2012). Assuming certain natural non-degeneracy conditions on the map $f$ and the variety $V$, which in particular ensure that the source has enough min-entropy, we extract almost all the min-entropy of the distribution. Unlike the Dvir-Gabizon-Wigderson and Dvir results, our construction works over large enough finite fields of arbitrary characteristic. One key part of our construction is an improved deterministic rank extractor for varieties. As a by-product, we obtain explicit Noether normalization lemmas for affine varieties and affine algebras. Additionally, we generalize a construction of affine extractors with exponentially small error due to Bourgain, Dvir and Leeman (Comput. Complex. 2016) by extending it to all finite prime fields of quasipolynomial size.
翻译:我们为多种品种的多元图象建造明确的确定性提取器,即通过应用低度多面性地图采集的分布样本(FOCS 2007,Comput.Complex.2009),以及Dvir研究的多种来源(CCC 2009,Compuut.Complex.2012)。假设地图上某些自然的非退化性条件($f)和各种价值($V)随机随机抽样,这特别确保来源有足够的微量种植,我们几乎提取分布的所有微量作物。与Dvir-Gabizon-Wigderson和Wigderson研究的多面性来源(FOCS 2007,Comput.Complex.2009)和Dvirson研究的多种来源(Form),以及Dvir(CCC 2009,Computut.Complex.Complex.2012)所研究的多种来源。假设地图上某些自然的非退化性条件($和各种价值($V),这特别确保来源有足够的微量,我们几乎提取所有微量的分布。不同于Dviral-Gabiz-Wigerson-wers,我们建筑的建筑工程在足够有限的任意特性上做了一个硬质的精质的精质的精质的精质的精质的精质的精质的精度。