In visual semantic navigation, the robot navigates to a target object with egocentric visual observations and the class label of the target is given. It is a meaningful task inspiring a surge of relevant research. However, most of the existing models are only effective for single-agent navigation, and a single agent has low efficiency and poor fault tolerance when completing more complicated tasks. Multi-agent collaboration can improve the efficiency and has strong application potentials. In this paper, we propose the multi-agent visual semantic navigation, in which multiple agents collaborate with others to find multiple target objects. It is a challenging task that requires agents to learn reasonable collaboration strategies to perform efficient exploration under the restrictions of communication bandwidth. We develop a hierarchical decision framework based on semantic mapping, scene prior knowledge, and communication mechanism to solve this task. The results of testing experiments in unseen scenes with both known objects and unknown objects illustrate the higher accuracy and efficiency of the proposed model compared with the single-agent model.


翻译:在视觉语义导航中,机器人通过以自我为中心的视觉观察和目标的分类标签向目标对象导航,这是一项有意义的任务,激发了相关研究的激增。然而,大多数现有模型仅对单一试探导航有效,而单一剂在完成更复杂的任务时效率低,差错容忍度低。多剂协作可以提高效率,并具有强大的应用潜力。在本文件中,我们提议多剂视觉语义导航,其中多个剂与他人合作寻找多个目标对象。这是一项具有挑战性的任务,要求代理人学习合理的协作战略,以便在通信带宽的限制下进行有效的探索。我们根据语义绘图、先行知识和通信机制,开发一个等级决策框架,以解决这项任务。用已知的物体和未知物体对看不见的场景进行试验的结果表明,与单一试样相比,拟议模型的准确性和效率更高。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
56+阅读 · 2021年6月30日
【CORL2020最佳系统论文奖】可扩展多智能体强化学习学校
专知会员服务
18+阅读 · 2020年11月30日
【KDD 2020】基于互信息最大化的多知识图谱语义融合
专知会员服务
42+阅读 · 2020年9月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年11月8日
Arxiv
5+阅读 · 2018年10月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员