We study decentralized learning in two-player zero-sum discounted Markov games where the goal is to design a policy optimization algorithm for either agent satisfying two properties. First, the player does not need to know the policy of the opponent to update its policy. Second, when both players adopt the algorithm, their joint policy converges to a Nash equilibrium of the game. To this end, we construct a meta algorithm, dubbed as $\texttt{Homotopy-PO}$, which provably finds a Nash equilibrium at a global linear rate. In particular, $\texttt{Homotopy-PO}$ interweaves two base algorithms $\texttt{Local-Fast}$ and $\texttt{Global-Slow}$ via homotopy continuation. $\texttt{Local-Fast}$ is an algorithm that enjoys local linear convergence while $\texttt{Global-Slow}$ is an algorithm that converges globally but at a slower sublinear rate. By switching between these two base algorithms, $\texttt{Global-Slow}$ essentially serves as a ``guide'' which identifies a benign neighborhood where $\texttt{Local-Fast}$ enjoys fast convergence. However, since the exact size of such a neighborhood is unknown, we apply a doubling trick to switch between these two base algorithms. The switching scheme is delicately designed so that the aggregated performance of the algorithm is driven by $\texttt{Local-Fast}$. Furthermore, we prove that $\texttt{Local-Fast}$ and $\texttt{Global-Slow}$ can both be instantiated by variants of optimistic gradient descent/ascent (OGDA) method, which is of independent interest.


翻译:我们用两个玩家零和折扣的Markov游戏来研究分散学习,目标是为满足两个属性的任一代理商设计一个政策优化算法。 首先, 玩家不需要知道对手更新其政策的政策。 其次, 当两个玩家都采用算法, 他们的联合政策会与游戏的纳什平衡相融合。 为此, 我们构建了一个元算法, 被称为$\ textt{ Homotopy- PO} $, 它可以在全球线性速度中找到纳什平衡 。 特别是, $\ tt{ Homotopy- PO} $ 的双基算法 。 美元- tweave 2 基算法 $ textt{ 本地- fast} $ 和 $ texttralt} 基算法, 我们的基底基底值和基底基底值的基底值是 美元, 美元基底值的基底值, 美元的基底值是O的基底值, 的基底值是O 的基底值, 的基底值是基底值的基底值, 的基底的基底值, 的基底值是基底值的基底值的基底值的基底值的基值的基值的基值的基值是, 。</s>

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月25日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员