In this paper, we introduce DLB, a Deep Learning based load Balancing mechanism, to effectively address the data skew problem. The key idea of DLB is to replace hash functions in the load balancing mechanisms with deep learning models, which are trained to be able to map different distributions of workloads and data to the servers in a uniformed manner. We implemented DLB and deployed it on a practical Cloud environment using CloudSim. Experimental results using both synthetic and real-world data sets show that compared with traditional hash function based load balancing methods, DLB is able to achieve more balanced mappings, especially when the workload is highly skewed.

0
下载
关闭预览

相关内容

Deep learning has made revolutionary advances to diverse applications in the presence of large-scale labeled datasets. However, it is prohibitively time-costly and labor-expensive to collect sufficient labeled data in most realistic scenarios. To mitigate the requirement for labeled data, semi-supervised learning (SSL) focuses on simultaneously exploring both labeled and unlabeled data, while transfer learning (TL) popularizes a favorable practice of fine-tuning a pre-trained model to the target data. A dilemma is thus encountered: Without a decent pre-trained model to provide an implicit regularization, SSL through self-training from scratch will be easily misled by inaccurate pseudo-labels, especially in large-sized label space; Without exploring the intrinsic structure of unlabeled data, TL through fine-tuning from limited labeled data is at risk of under-transfer caused by model shift. To escape from this dilemma, we present Self-Tuning to enable data-efficient deep learning by unifying the exploration of labeled and unlabeled data and the transfer of a pre-trained model, as well as a Pseudo Group Contrast (PGC) mechanism to mitigate the reliance on pseudo-labels and boost the tolerance to false labels. Self-Tuning outperforms its SSL and TL counterparts on five tasks by sharp margins, e.g. it doubles the accuracy of fine-tuning on Cars with 15% labels.

0
0
下载
预览

We tackle the non-convex problem of learning a personalized deep learning model in a decentralized setting. More specifically, we study decentralized federated learning, a peer-to-peer setting where data is distributed among many clients and where there is no central server to orchestrate the training. In real world scenarios, the data distributions are often heterogeneous between clients. Therefore, in this work we study the problem of how to efficiently learn a model in a peer-to-peer system with non-iid client data. We propose a method named Performance-Based Neighbor Selection (PENS) where clients with similar data distributions detect each other and cooperate by evaluating their training losses on each other's data to learn a model suitable for the local data distribution. Our experiments on benchmark datasets show that our proposed method is able to achieve higher accuracies as compared to strong baselines.

0
0
下载
预览

Complex design problems are common in the scientific and industrial fields. In practice, objective functions or constraints of these problems often do not have explicit formulas, and can be estimated only at a set of sampling points through experiments or simulations. Such optimization problems are especially challenging when design parameters are high-dimensional due to the curse of dimensionality. In this work, we propose a data-informed deep optimization (DiDo) approach as follows: first, we use a deep neural network (DNN) classifier to learn the feasible region; second, we sample feasible points based on the DNN classifier for fitting of the objective function; finally, we find optimal points of the DNN-surrogate optimization problem by gradient descent. To demonstrate the effectiveness of our DiDo approach, we consider a practical design case in industry, in which our approach yields good solutions using limited size of training data. We further use a 100-dimension toy example to show the effectiveness of our model for higher dimensional problems. Our results indicate that the DiDo approach empowered by DNN is flexible and promising for solving general high-dimensional design problems in practice.

0
0
下载
预览

We propose a deep learning-based method that uses spatial and temporal information extracted from the sub-6GHz band to predict/track beams in the millimeter-wave (mmWave) band. In more detail, we consider a dual-band communication system operating in both the sub-6GHz and mmWave bands. The objective is to maximize the achievable mutual information in the mmWave band with a hybrid analog/digital architecture where analog precoders (RF precoders) are taken from a finite codebook. Finding a RF precoder using conventional search methods incurs large signalling overhead, and the signalling scales with the number of RF chains and the resolution of the phase shifters. To overcome the issue of large signalling overhead in the mmWave band, the proposed method exploits the spatiotemporal correlation between sub-6GHz and mmWave bands, and it predicts/tracks the RF precoders in the mmWave band from sub-6GHz channel measurements. The proposed method provides a smaller candidate set so that performing a search over that set significantly reduces the signalling overhead compared with conventional search heuristics. Simulations show that the proposed method can provide reasonable achievable rates while significantly reducing the signalling overhead.

0
0
下载
预览

Meta-learning has been proposed as a framework to address the challenging few-shot learning setting. The key idea is to leverage a large number of similar few-shot tasks in order to learn how to adapt a base-learner to a new task for which only a few labeled samples are available. As deep neural networks (DNNs) tend to overfit using a few samples only, meta-learning typically uses shallow neural networks (SNNs), thus limiting its effectiveness. In this paper we propose a novel few-shot learning method called meta-transfer learning (MTL) which learns to adapt a deep NN for few shot learning tasks. Specifically, "meta" refers to training multiple tasks, and "transfer" is achieved by learning scaling and shifting functions of DNN weights for each task. In addition, we introduce the hard task (HT) meta-batch scheme as an effective learning curriculum for MTL. We conduct experiments using (5-class, 1-shot) and (5-class, 5-shot) recognition tasks on two challenging few-shot learning benchmarks: miniImageNet and Fewshot-CIFAR100. Extensive comparisons to related works validate that our meta-transfer learning approach trained with the proposed HT meta-batch scheme achieves top performance. An ablation study also shows that both components contribute to fast convergence and high accuracy.

0
3
下载
预览

Deep reinforcement learning suggests the promise of fully automated learning of robotic control policies that directly map sensory inputs to low-level actions. However, applying deep reinforcement learning methods on real-world robots is exceptionally difficult, due both to the sample complexity and, just as importantly, the sensitivity of such methods to hyperparameters. While hyperparameter tuning can be performed in parallel in simulated domains, it is usually impractical to tune hyperparameters directly on real-world robotic platforms, especially legged platforms like quadrupedal robots that can be damaged through extensive trial-and-error learning. In this paper, we develop a stable variant of the soft actor-critic deep reinforcement learning algorithm that requires minimal hyperparameter tuning, while also requiring only a modest number of trials to learn multilayer neural network policies. This algorithm is based on the framework of maximum entropy reinforcement learning, and automatically trades off exploration against exploitation by dynamically and automatically tuning a temperature parameter that determines the stochasticity of the policy. We show that this method achieves state-of-the-art performance on four standard benchmark environments. We then demonstrate that it can be used to learn quadrupedal locomotion gaits on a real-world Minitaur robot, learning to walk from scratch directly in the real world in two hours of training.

0
5
下载
预览

Metric learning learns a metric function from training data to calculate the similarity or distance between samples. From the perspective of feature learning, metric learning essentially learns a new feature space by feature transformation (e.g., Mahalanobis distance metric). However, traditional metric learning algorithms are shallow, which just learn one metric space (feature transformation). Can we further learn a better metric space from the learnt metric space? In other words, can we learn metric progressively and nonlinearly like deep learning by just using the existing metric learning algorithms? To this end, we present a hierarchical metric learning scheme and implement an online deep metric learning framework, namely ODML. Specifically, we take one online metric learning algorithm as a metric layer, followed by a nonlinear layer (i.e., ReLU), and then stack these layers modelled after the deep learning. The proposed ODML enjoys some nice properties, indeed can learn metric progressively and performs superiorly on some datasets. Various experiments with different settings have been conducted to verify these properties of the proposed ODML.

0
7
下载
预览

In recent years, person re-identification (re-id) catches great attention in both computer vision community and industry. In this paper, we propose a new framework for person re-identification with a triplet-based deep similarity learning using convolutional neural networks (CNNs). The network is trained with triplet input: two of them have the same class labels and the other one is different. It aims to learn the deep feature representation, with which the distance within the same class is decreased, while the distance between the different classes is increased as much as possible. Moreover, we trained the model jointly on six different datasets, which differs from common practice - one model is just trained on one dataset and tested also on the same one. However, the enormous number of possible triplet data among the large number of training samples makes the training impossible. To address this challenge, a double-sampling scheme is proposed to generate triplets of images as effective as possible. The proposed framework is evaluated on several benchmark datasets. The experimental results show that, our method is effective for the task of person re-identification and it is comparable or even outperforms the state-of-the-art methods.

0
3
下载
预览

Modern communication networks have become very complicated and highly dynamic, which makes them hard to model, predict and control. In this paper, we develop a novel experience-driven approach that can learn to well control a communication network from its own experience rather than an accurate mathematical model, just as a human learns a new skill (such as driving, swimming, etc). Specifically, we, for the first time, propose to leverage emerging Deep Reinforcement Learning (DRL) for enabling model-free control in communication networks; and present a novel and highly effective DRL-based control framework, DRL-TE, for a fundamental networking problem: Traffic Engineering (TE). The proposed framework maximizes a widely-used utility function by jointly learning network environment and its dynamics, and making decisions under the guidance of powerful Deep Neural Networks (DNNs). We propose two new techniques, TE-aware exploration and actor-critic-based prioritized experience replay, to optimize the general DRL framework particularly for TE. To validate and evaluate the proposed framework, we implemented it in ns-3, and tested it comprehensively with both representative and randomly generated network topologies. Extensive packet-level simulation results show that 1) compared to several widely-used baseline methods, DRL-TE significantly reduces end-to-end delay and consistently improves the network utility, while offering better or comparable throughput; 2) DRL-TE is robust to network changes; and 3) DRL-TE consistently outperforms a state-ofthe-art DRL method (for continuous control), Deep Deterministic Policy Gradient (DDPG), which, however, does not offer satisfying performance.

0
7
下载
预览

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

0
12
下载
预览
小贴士
相关论文
Ximei Wang,Jinghan Gao,Mingsheng Long,Jianmin Wang
0+阅读 · 7月21日
Decentralized federated learning of deep neural networks on non-iid data
Noa Onoszko,Gustav Karlsson,Olof Mogren,Edvin Listo Zec
0+阅读 · 7月20日
Lulu Zhang,Zhi-Qin John Xu,Yaoyu Zhang
0+阅读 · 7月17日
Rafail Ismayilov,Renato L. G. Cavalcante,Sławomir Stańczak
0+阅读 · 7月16日
Meta-Transfer Learning for Few-Shot Learning
Qianru Sun,Yaoyao Liu,Tat-Seng Chua,Bernt Schiele
3+阅读 · 2019年4月9日
Tuomas Haarnoja,Aurick Zhou,Sehoon Ha,Jie Tan,George Tucker,Sergey Levine
5+阅读 · 2018年12月26日
Wenbin Li,Jing Huo,Yinghuan Shi,Yang Gao,Lei Wang,Jiebo Luo
7+阅读 · 2018年5月15日
Wentong Liao,Michael Ying Yang,Ni Zhan,Bodo Rosenhahn
3+阅读 · 2018年2月9日
Zhiyuan Xu,Jian Tang,Jingsong Meng,Weiyi Zhang,Yanzhi Wang,Chi Harold Liu,Dejun Yang
7+阅读 · 2018年1月17日
Xiangyu Zhao,Liang Zhang,Zhuoye Ding,Dawei Yin,Yihong Zhao,Jiliang Tang
12+阅读 · 2018年1月5日
相关资讯
已删除
将门创投
11+阅读 · 2019年8月13日
深度互学习-Deep Mutual Learning:三人行必有我师
深度学习大讲堂
5+阅读 · 2019年6月27日
Transferring Knowledge across Learning Processes
CreateAMind
6+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
28+阅读 · 2019年1月3日
spinningup.openai 强化学习资源完整
CreateAMind
4+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
16+阅读 · 2018年5月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top