Chimney fires constitute one of the most commonly occurring fire types. Precise prediction and prompt prevention are crucial in reducing the harm they cause. In this paper, we develop a combined machine learning and statistical modeling process to predict chimney fires. Firstly, we use random forests and permutation importance techniques to identify the most informative explanatory variables. Secondly, we design a Poisson point process model and apply associated logistic regression estimation to estimate the parameters. Moreover, we validate the Poisson model assumption using second-order summary statistics and residuals. We implement the modeling process on data collected by the Twente Fire Brigade and obtain plausible predictions. Compared to similar studies, our approach has two advantages: i) with random forests, we can select explanatory variables non-parametrically considering variable dependence; ii) using logistic regression estimation, we can fit the statistical model efficiently by tuning it to focus on important regions and times of the fire data.
翻译:Chimney火灾是最常见的火灾类型之一。 精确预测和迅速预防对于减少其造成的伤害至关重要。 在本文中,我们开发了一个机器学习和统计建模相结合的过程来预测烟囱火灾。 首先,我们使用随机森林和变异重要技术来确定信息最丰富的解释变量。 其次,我们设计了一个 Poisson 点点处理模型,并应用相关的后勤回归估计来估计参数。 此外,我们利用二级简要统计和残留物来验证Poisson模型的假设。我们用Twente消防旅收集的数据来进行建模过程,并获得可信的预测。与类似的研究相比,我们的方法有两个好处:(1) 与随机森林相比,我们可以选择非分辨性的解释变量,考虑不同依赖性;ii 使用后勤回归估计,我们可以有效地调整统计模型,将其调整到火灾数据的重要地区和时间。